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Expressions are given for the potential energy, the forces, and the virial in a computer 
ensemble of N polarizable point dipoles. An iterative scheme for use in molecular dynamics 
calculations is tested. 

1. INTRODUCTION 

In molecular dynamics calculations on systems of dipolar molecules [l-4] polar- 
ization effects have generally been disregarded, or treated only in an ad hoc manner by 
the introduction of “effective” dipole moments [3,4]. The only exception is a tentative 
study by Berendsen [5] on a rather complicated system, namely a polarizable BNS [3] 
water model. In the new and very promising central force model of Lemberg and 
Stillinger [6] polarizability is implicitly accounted for, but it is difficult to discern its 
effects from those of other model parameters. 

While the effective dipole approach, with suitably chosen effective moments, may 
yield a good approximation to the correct equilibrium properties, it cannot a priori 
be expected to account equally well for the dynamics and the dielectric properties 
of a polarizable dipole system. 

By way of a systematic approach to this problem one should start out by studying 
a very simple “Stockmayer-type” system consisting of spherical molecules (e.g., 
Leonard-Jones) with embedded polarizable point dipoles. Since the spherical sym- 
metric part of the potential is irrelevant for our purposes, only the dipolar part is 
considered in the following sections. 

The numerical calculation of the many-particle dynamics of polarizable dipole 
molecules is complicated by the fact that the convenient assumption of pairwise 
additive interactions is no longer valid. It is therefore necessary at each time step first 
to compute all induced dipoles in a self-consistent way before one can determine all 
the quantities that appear in the equations of motion and in the molecular expressions 
for the thermodynamic functions. 

In Section 2 expressions are given for the potential energy, the force on one particle, 
and the virial in a system of N polarizable point dipoles. These formulas are then 
modified by long-range correction terms, so as to be applicable in computer experi- 
ments on pseudoinflnite samples. Specific schemes for calculating the induced dipoles 
for a given configuration are discussed, and the rate of convergence of an iterative 
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procedure is tested in Section 3. The performance of the iterative method in an actual 
molecular dynamics calculation is studied in Section 4. In the last section prospects 
and problems of molecular dynamics calculations on such a system are discussed. 

2. POTENTIAL ENERGY, FORCES, AND VIRIAL 

Consider a configuration of N point dipoles with a set of spatial coordinates 
r SE {q *a* rN), rigid dipole vectors p = {pl *** pN), and a constant polarizibility 01. 
The induced dipoles are then given by 

Ap, = aEi = a C Tij(pj + Ap,) = a C zjpj*, 
j j 

where Ei is the local electrostatic field at point i, 

(1) 

(2) 

is the dipole-dipole tensor, and pj* denotes the total (resultant) dipole vector of 
particle j. 

The total potential energy of the system is given by 

Got@, p) = -Q C C pi*Zjpi* + (l/24 C AP,~ 
* j , 

= -&TP,E,, 
(3) 

where the term (1/2~) xi Ap,z = (42) x:i Ed2 = UP01 denotes the work of formation 
of the induced dipoles. It is important to note that the generalized function 

WY r, PI = -4 C C (pi + Zi) TjtPj + Zj) + (1/2a) 1 Zi2 
t i I 

for given r and p is minimized by the choice 

(4) 

zi = Ap&, PI = 01 C ZApi + AP,), i = l,..., N. 
j 

By definition of U this minimum coincides with Ut,,t(r, p) 

u[Aptr, P), r, PI = Utottr, PI 

For the force acting on particle k we have, in an obvious notation, 
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Due to the minimum property of U(z, r, p) the second term vanishes, and we get 

with 

The virial of our system for a given configuration is 

W = -+ c c 2 KgjxLj = -3 1 c pr*Tkjpj* = 3(&t - U,,ol). (8) 
k j Y k j 

(7) 

Energy, force, and virial, together with the torque on particle k, 

Nk = Pk x Ek (9) 

are all that is needed for a molecular dynamics calculation on the system under 
consideration. The above expressions, however, are not yet suitable for numerical 
work on a “pseudoinfinite” molecular dynamics system which consists of periodic 
boxes containing typically N GV 100-1000 molecules. In computer experiments on 
molecules with short-ranged potentials the interactions of a given particle with the 
others are explicitly calculated only up to a certain cutoff distance, while the long-range 
part is dealt with by way of a simple correction term. Due to the slow (l/r3) radial 
decay of the dipole-dipole potential the long-range correction is rather large in this 
case and must be constructed with some care. In the framework of rigid dipole 
calculations two methods have been proposed to deal with this problem: one is the 
Ewald-Kornfeld summation method, in which the volume containing N dipoles is 
regarded as a basic crystallographic element in an infinite “crystal”; the interactions 
of a given dipole with all the others within the basic cell and with all the periodic 
images of all dipoles is then expressed in terms of two rapidly converging series [7, 81. 
The suspicion, however, that this method overemphasizes the artificial periodicity 
of the computer ensemble has not yet been disproved [8]. Moreover, the evaluation 
of the said series is still a rather tedious task. (Smith and Perram [9] have recently 
proposed a numerical method which may serve to improve things in this respect.) The 
other method of correcting for the long-range interactions has been introduced by 
Barker and Watts in their Monte Carlo work on water [lo]. Drawing from theonsager- 
Debye theory of dielectrics, it treats the surroundings of the cutoff sphere as a dielectric 
continuum (with properly estimated dielectric constant c,,) which is polarized by the 
total dipole moment of the truncation sphere. This polarization then creates an 
additional “reaction field” Ri within the sphere around particle i, and it is the inter- 
action of the dipole i with this reaction field which is hoped to properly account for the 
interaction with the further-out regions of our system. If we regard the reaction field 
as an instantaneous effect, this concept can also be applied to a molecular dynamics 
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ensemble of dipoles [l 11. The generalization to polarizable dipoles presents no serious 
problem: The reaction field within the cutoff sphere of radius rCO is 

R1 = a c pj*, where a = 2(E0 - l) ’ 
5o.q 2~~ + 1 ri, 

and where the sum is over all dipoles within the cutoff sphere, including the central 
dipole i. The resultant field Ei is then 

Ei = a C Tijpj* + Ri = c (Ti, + a) pj* 
5ES, 5esi 

and the induced dipoles are now 

The total potential energy is 

Utot = -3 1 p&i = -4 C C pi(Zj + a) pi*- (13) 
1 i 5E.Q 

The force on the central particle i is not changed by the reaction field, which by 
construction is homogeneous within the cutoff sphere 

(14) 

If we take (13) to be a good approximation to the exact potential energy, we 
can simply insert (13) into (8) to get for the virial 

W= -6 C C Pi(Zj + a) Pj* - (3/2a) 1 Api’ 
i 5sS, % 

= -% C C Pi(Cj + a) Pj* - (34) C Et’* 
i jSS, 1 

(15) 

The torque on particle i is, of course, given by 

Ni = Pi X Es = pi X 1 (T<j + a) pj* . 
5OS* 1 

3. CALCULATION OF THE INDUCED DIPOLES 

(16) 

The actual calculation of the induced dipoles APi (or, equivalently, of the local 
fields Ei) for given r and p can be achieved in two different ways. 
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(a) Algebraically, by solving the equations 

or, formally, 

with 

dp=dp (17) 

d = 01[1 - cX(Y + a)]“(Y + a). 

Considering that d is a 3N x 3n-matrix, with typical values of iV M 100 and IZ m 50 
(number of particles within a cutoff sphere), it was not attempted to carry through 
such a calculation; however, LZ? is highly symmetrical and Eq. (17) may well be 
treatable. 

(b) In a more simple and intuitive way, by seeking an iterative solution to (17). 
As starting values one may choose dpi = 0. Another choice, which is more suitable 
for use in molecular dynamics calculations, would be pi*(t) = pi*(t - dt), the 
resultant dipole vector at the previous time step. 

I 

i?i : 1 
jcS. 

(Tij + a) ‘gj + Ajfj) 

I 
Agi = aFi 

I 

FIGURE 1 

The convergence properties of the simple iterative procedure shown in Fig. 1 was 
tested, using a random configuration of 108 Stockmayer particles. The “rigid Stock- 
mayer” molecular dynamics program used to create this configuration was made 
available to me by D. Adams. State parameters pertaining to the test configuration 
were the following: reduced density p” (=(N/ V) u3) = 0.7, reduced temperature p 
( E T&/E)) = 1.19 and reduced dipole moment # ( =p/(~$)l/~) = 1. Always using the 
same rigid dipole directions and relative positions of the particles 15 iterations were 
performed for each of the six states p” = 0.6/0.7/0.8, j = 1, d (=(a/&‘)) = O.OS/O.lO. 
In addition, the rather extreme case p” = 0.8, $ = 1, & = 0.15 was studied in an 
analogous way. Taking the Lennard-Jones parameters of argon (c = 1.653 * lo-l4 erg, 
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u = 3.405 A) as an example, j = 1 is equivalent to a dipole moment of 0.808 D, 
and B = 0.05 would imply 01 = 1.97 * 1O-24 cm3. After each iteration IZ the values of 

and 

S,(n) = f 1 E&i) - E&r - 1)1” 
i=l 

S,(n) = 2 Ee2(n) 
i=l 

were printed. The quantity R&z) = Sr(n)/&( it was used as a measure for the accuracy ) 
achieved after step n (it should be understood that 71 = 0 denotes the initial step). 
It is evident from Fig. 2 that In R,(n) becomes an approximately linear function of n 
after a few iterations, and that the rate of descent depends weakly on density and 
strongly on the polarizability d. For the different states under study the number of 
iterations needed to achieve an accuracy of RE = 1O-4 are listed in Table I. In the 
“unphysical” case B = 0.15 no convergence was achieved within 20 iterations. As 
cross-checks have shown, the results given in Fig. 2 and Table I are well reproduced 
when different rigid dipole configurations are used. 

” 

d) 

FIG. 2. Logarithm of relative error of the field after n iterations; (a) p = 0.6, @) p’ = 0.7, (c) and 
(d) p = 0.8; triangles: B = 0.05, dots: d = 0.10 (a = 0.15 in case (d)). The v&d bar denotes the 
region 10-O Q RE < 4 * 10-4. 
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TABLE I 
Number of iterations necessary to reach RE < 1O-4 if Api (n = 0) = 0; 

limiting slope km of In RE 

E = 0.05 z = 0.10 

P n km 
0.6 3 -2.76 
0.7 3-4 -2.35 
0.8 4 -2.13 

n km 
5 -1.19 
7 -0.85 
9 -0.61 

P -+F 
pi = Gi (at time 0) 

I +* 
pi = $;(t-At) 

(at time t) 

FIGURE 3 
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The formulas given in Section 2 together with the iterative procedure provide the 
means for computer experiments on polarizable dipolar molecules. In the framework 
of an actual molecular dynamics program the loop of Fig. 1 is to be replaced by the 
subroutine of Fig. 3. 

We have seen that the iteration scheme converges quite rapidly for reasonable 
values of a, even if we take flpa = 0 as initial values. Convergence will be much faster 
within a molecular dynamics run where we have a better estimate on dp, , or pi*, 
to start with. The proximity of pd*(t - dt) to pi*(t), and therefore the speed of 
convergence to some required accuracy, will depend on the size of the time step, 
on temperature, on mass and moment of inertia of the particles, etc. We can obtain 
an estimate on the number of iterations needed if we assume that the typical change 
in Ei during one time step will not exceed, say, 2 % of the average value of / Ei [ 
(otherwise the time step would be too large anyway). Further assuming, for the sake 
of argument, that all local fields are independent, we have 

1 Ad / = / Ei(t) - E&t - &)I < 0.02(1/N) c I Ei I d 0.02 
z 

or 

Thus, 

Ai < 0.0004(1/N) c Ei2. 
z 

&(I) = gf = $g < o.ooo4. 
2 I 

It is evident from Fig. 2 that in this situation only one (for B = 0.05) or two (for 
B = 0.10) iterations are necessary to improve the accuracy to RE < 10”‘. 

Experience with preliminary molecular dynamics calculations has shown that the 
above estimates are in fact too pessimistic: Values of R,(l) are typically much lower, 
in some cases even below 1O4. 

It should be mentioned that other cutoff conditions than RE < lo4 could be used. 
In order to calculate the dynamics of each particle accurately to 1 % a suitable 
condition would be 

max I Ed4 - Ei(n - l)l < 1o-2 
i=l,...,N I EdnIl ’ 

but the rapid convergence renders such considerations unimportant, and the simple 
prescription given in Fig. 3 should suffice in all practical applications. 

4. PERFORMANCE TESTS 

The iteration subroutine of Fig. 3 was incorporated in Adams’ molecular dynamics 
program, and the performance of the method was tested in a series of trial runs. 
These calculations, as well as the static tests of Section 3, were done on the Vienna 
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Interuniversitary Computing Center’s CDC-CYBER 74, and required approximately 
1 set per iteration. The time step used was At = O.O16(mo”/40~)~~~, and the moment 
of inertia was I = maa/40. 

Starting from a specific “thermalized” configuration, the polarizable Stockmayer 
system was followed for 100 time steps, the cutoff accuracy being set to RE < 10”‘. 
It was found that for the state p” = 0.7, !$ = 1.158, # = 1, & = 0.05 the mean number 
of iterations per time step was only slightly larger than 1, and the actual mean accuracy 
was <RE) = 0.34 - 10”‘. 

In a parallel run using the same starting cotiguration of the particles the cutoff 
condition on RE was removed, and full 10 iterations were performed at each time step. 
This resulted in a virtually infinite accuracy (RE( 10) N 0.5 * 10-ls) and a corresponding 
increase in computing time. 

The total (kinetic plus potential) energy of the system was monitored and compared 
for the two computations. Figures 4a and 4b show the energy and its deviation from 
the “infinite accuracy” value for every Hth time step. (The relatively large energy 
fluctuations as well as the slight overall trend are due to “jumps” in the potential 
energy whenever a dipole enters or leaves the cutoff sphere of another dipole.) It is 
evident that the condition RE < 10-4, requiring typically l-2 iterations per time step, 
is perfectly sufficient, so that a good approximation to the “real” phase space trajectory 

-325- 

5 -324- 

W- 

-323 - 

r 

time steps 

FIG. 4. (a) Total energy Etot of the N = 108 polarizable Stockmayer system with fi = 1, d = 
0.05, P = 0.7, ?’ = 1.15. Energy is given in units of z for every fifth time step; straight lines between 
points are for convenience. Dots denote the “ini%ite accuracy” run with 10 iterations, triangles are 
for (RB) = 3.4:. 1O-5. @) Deviation of Etot from the “inlinite accuracy” value. 

58112414-3 
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of the polarizable Stockmayer system can be achieved at only moderate expense in 
computer time. 

Having assessed the accuracy of the iterative method, a longer computation was 
performed to calculate internal energy and pressure of the polarizable Stockmayer 
system. State parameters were p” = 0.7, rf = 1.144, $ = 1, E = 0.05, and E,, (for the 
reaction field) = 4. In addition, the simple Stockmayer (G = 0) system was studied 
using the same values of p”, $ and Ed ; mean temperature was p = 1.189 in this case. 
Since in molecular dynamics calculations the temperature is not a fixed parameter, 
the results had to be corrected for temperature to be comparable with literature values. 
The internal energies and pressures given in Ref. [12] suggest that the variation with 
temperature of these properties stems mainly from the Lennard-Jones interaction. 
Making this assumption and constructing a quadratic fit to literature values of 
UL’INE and pLJlpkT at T = 0.75, 1.15, and 1.35, one derives, at T = 1.15, the 
gradients d(ULJ/Ne)/dT = 1.025 and d(pLJ/pkT)/dT = 3.674. These were used for a 
linear correction, the deviations of temperature from the desired value being small 
in both calculations. 

Results are given in Table II. Statistical errors are estimated to be f0.05 for U/NE 
and 50.10 forp/pkT. Literature values given for comparison are Pad6 approximations 
to perturbation theoretical results and are taken from McDonald [12]. 

TABLE II 

Preliminary results for thermodynamic properties of the N = 108 polarizable Stockmayer system 
p = 0.7, T = 1.15” 

No. of 
steps -$ Cm4 

p”=l,Z=O 1200 -5.59 -5.69 -0.04 0.12 
fi = 1, d = 0.05 972 -5.80 -5.80 -0.09 -0.04 

= (md) = results of molecular dynamics calculations; (tpt) = results of thermodynamic pertur- 
bation theory taken from Ref. [121. 

The comparison is encouraging, though not yet conclusive. Deviations are larger 
for the simple Stockmayer system than in the polarizable case, and longer runs will be 
necessary to clear this point. 

5. DISCUSSION AND OUTLOOK 

The static tests described in Section 3 and the preliminary molecular dynamics runs 
of Section 4 have shown that the N-particle dynamics of a simple polarizable dipole 
system can be studied in the computer without excessive cost in computer time. In 
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fact, it may be sufficient in some cases to calculate the local fields at time t by the 
formula 

EiO) = 1 (Zj(t) + a) pi*0 - At), 
jE si 

without performing any iterations at all. 
It may be desirable to extend the considerations of Section 2 to cover nonisotropic 

and environment-dependent polarizabilities. Nowhere have we made use of the scalar 
property of 01, so the formulas of Section 2 apply even if 01 is a tensor quantity. More- 
over, all the expressions remain treatable if we try to include the influence of the 
interparticle interactions (and especially head-on collisions) on the polarizability, 
which can be done by introducing an indexed 0~~ that may vary between different 
particles. 

For large polarizabilities and temperatures a polarization catastrophe may occur. 
The condition for this is 

rii < (2fx)l13. 

During a collision with a relative kinetic energy of, say, 1006, two Lennard-Jones 
molecules approach each other to a distance of rmin = 0.67~. The “catastrophe 
condition” on 01 is then 01 > 0. 15u3, or, again taking argon as an example, 
01 > 5.92 * 1O-24 cm3. Since 01 is typically in the range (1 - 3) * 1O-24 cm3, a breakdown 
of this kind is due to occur at very high temperatures only. 
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